skip to main content


Search for: All records

Creators/Authors contains: "Ilan, Boaz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study the radiative transfer of a spatially modulated plane wave incident on a half-space composed of a uniformly scattering and absorbing medium. For spatial frequencies that are large compared to the scattering coefficient, we find that first-order scattering governs the leading behavior of the radiance backscattered by the medium. The first-order scattering approximation reveals a specific curve on the backscattered hemisphere where the radiance is concentrated. Along this curve, the radiance assumes a particularly simple expression that is directly proportional to the phase function. These results are inherent to the radiative transfer equation at large spatial frequency and do not have a strong dependence on any particular optical property. Consequently, these results provide the means by which spatial frequency domain imaging technologies can directly measure the phase function of a sample. Numerical simulations using the discrete ordinate method along with the source integration interpolation method validate these theoretical findings.

     
    more » « less
  2. Abstract

    The Whitham equation was proposed as a model for surface water waves that combines the quadratic flux nonlinearityof the Korteweg–de Vries equation and the full linear dispersion relationof unidirectional gravity water waves in suitably scaled variables. This paper proposes and analyzes a generalization of Whitham's model to unidirectional nonlinear wave equations consisting of a general nonlinear flux functionand a general linear dispersion relation. Assuming the existence of periodic traveling wave solutions to this generalized Whitham equation, their slow modulations are studied in the context of Whitham modulation theory. A multiple scales calculation yields the modulation equations, a system of three conservation laws that describe the slow evolution of the periodic traveling wave's wavenumber, amplitude, and mean. In the weakly nonlinear limit, explicit, simple criteria in terms of generalandestablishing the strict hyperbolicity and genuine nonlinearity of the modulation equations are determined. This result is interpreted as a generalized Lighthill–Whitham criterion for modulational instability.

     
    more » « less